Vector quantization: a weighted version for time-series forecasting

نویسندگان

  • Amaury Lendasse
  • Damien François
  • Vincent Wertz
  • Michel Verleysen
چکیده

Nonlinear time-series prediction offers potential performance increases compared to linear models. Nevertheless, the enhanced complexity and computation time often prohibits an efficient use of nonlinear tools. In this paper, we present a simple nonlinear procedure for time-series forecasting, based on the use of vector quantization techniques; the values to predict are considered as missing data, and the vector quantization methods are shown to be compatible with such missing data. This method offers an alternative to more complex prediction tools, while maintaining reasonable complexity and computation time. © 2004 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Time Series Prediction by Weighted Vector Quantization

Classical nonlinear models for time series prediction exhibit improved capabilities compared to linear ones. Nonlinear regression has however drawbacks, such as overfitting and local minima problems, user-adjusted parameters, higher computation times, etc. There is thus a need for simple nonlinear models with a restricted number of learning parameters, high performances and reasonable complexit...

متن کامل

Long-Term Time Series Forecasting Using Self-Organizing Maps: the Double Vector Quantization Method

Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecasting method specifically designed for long-term trends prediction, with a double application of the Kohonen algorithm. We also consider practical issues for the use of the method.

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Forecasting the CATS benchmark with the Double Vector Quantization method

The Double Vector Quantization method, a long-term forecasting method based on the SOM algorithm, has been used to predict the 100 missing values of the CATS competition data set. An analysis of the proposed time series is provided to estimate the dimension of the auto-regressive part of this nonlinear auto-regressive forecasting method. Based on this analysis experimental results using the Dou...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Future Generation Comp. Syst.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2005